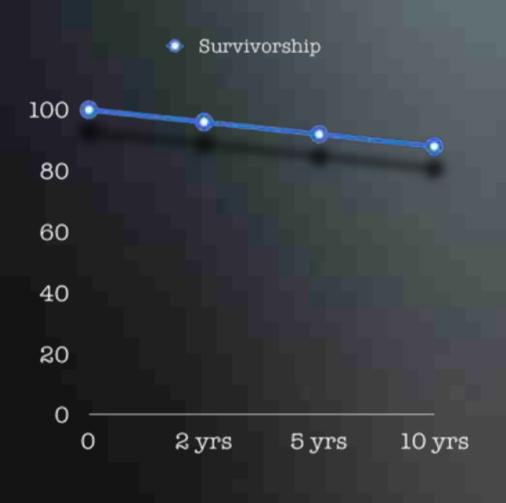
Managing infection in shoulder arthroplasty



Christian Dumontier, M.D., Ph.D. Institut de la Main (groupe épaule) & Hôpital saint Antoine, Paris

Shoulder replacement

- 7000 TSR / year in the USA from 1996-2002 (Bohsali)
- 17000 SR (Norris)
- 75% are performed by surgeons who do less than 2/yr on average

SR complication rate

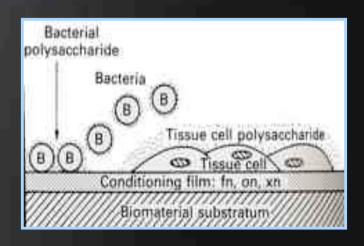
- Complication rate: 10-16%
 - ★ 414/2810 = 14,7% (Literature review)
 - \star 204/1459 = 14% (Wirth)
 - \star 53/431 = 12% (Chin)
 - * 123 / 1183 = 10% TSR (Cofield)

Complications

- Component loosening
- Prosthetic instability
- Cuff rupture
- Stiffness
- Peri-prosthetic Fx
- Infection
- Implant breakage
- Deltoid weakness
- Neural lesions

- Component loosening
- Instability
- Periprosthetic Fx
- Rotator cuff tears
- Neural injury
- Infection (0,7% lit)
- Deltoid muscle dysfonction

1997


2006

Causes for revision of shoulder arthroplasty

	Dines, 2006	Bayley, 2005	Swedish R
Glenoid revision	22	25	6
Conversion hemi to total	16	19	65
Humeral stem revision	8	3	12
Periprosthetic Fx	4	3	5
Rotator cuff repair	10	24	
Tuberosity reconstruction	4		
Cuff tear	4		11
Instability	5		59
Infection	4	1	19

Frequency of SR infection

- 0,3 to 0,8 % in literature review for primary replacement (Rockwood, Post, Schwyzer, Cofield, Kelly, SOFCOT,...)
- O to 15,4% for revision

Frequency of SR infection

	Kozak (1997)	Sperling (2001)	Boileau (2004)
n	1641	2734	2396
Primary	1,2%	0,075%	1,8%
Revision	4,46%	0,03%	4%

3-5% after fracture, ≈ 10% for reverse

General considerations

• ≈ 60% of patients present with predisposing factors (diabetes, corticoids, immunosuppression, Lupus or RA,...)

• Germs:

- Staphylococcus Aureus (12), epidermidis (9), Pseudomonas (4), Propioni-bacterium acnes (6) (Kozak, 1997)
- Staphyloccocus epidermidis (40%), P. acnes (20%), aureus (15%) (Boileau, 2004)

Difficult diagnosis

- Clinical changes: decrease ROM & pain +++
- Redness, oedema, inflammation or sinus tracts are late signs

Difficult diagnosis

- Blood analysis:
 - / Serum leucocyte count,
 - / Erythrocyte sedimentation rate,
 - / CRP
- Non specific, can be normal in up to 30% of cases

Difficult diagnosis

- Radiology: late signs
 - "Early changes, endosteal, humeral and glenoid sites, bony resorption"
- Scintigraphy:
 - 7/11 positive (Codd)
 - 58% positivity (Matsen)
 - Gallium or leucocytes cannot be made before 10 months postop (sensibility 80%)

Articular ponction

- To date the best method
- Stop any antibiotics (therapeutic window)
- Efficiency depends on the quality of the ponction and the care of the sample
 - 2 +/7 (Codd), 16% + (Boileau), 38% positivity (Matsen), 40% + (Jerosch)
 - 100% positivity (Ince)

Classification of infection

		Ince (2004)	Boileau (2004)
Acute	< 1 m	2	14
Subacute	2-3 m to 1 yr		6
Chronic (late)	> 1 yr	14	29

Treatment depends of

- Stage of infection
- The germ (Found/not found; gram+/ gram-)
- General status of the patient
- Bone quality, quality of the cuff, type of implant

Acute infection

- Implants can be left in place
- A large synovectomy is required (open or arthroscopic)
- Drainage
- Adapted antibiotherapy (i/v then p.o.) with the help of a bacteriologist

Acute infection- Results

- Up to 80% of patients present with a acceptable to good result
- 1/3 required a secondary procedure!
- End-results depends of:
 - Delay
 - Quality of resection of all infectedtissues (Rotator cuff!)

Subacute - Late infection

- No consensus
 - * One-stage replacement
 - * Two-stage replacement w/wo ciment spacer
 - * Articular resection

Take home message

- Whatever the series, functional results of the treatment of chronically infected shoulder arthroplasties give fair to poor results
- Constant's score average 30-40 pts!
- At FU: 30/42 are cured from infection (71%) while 29% are still infected or possibly infected (Boileau 2004)

Articular resection

- 1/3 of his series, 30% persistent infection (Boileau 2004)
- 21 resections (out of 32 cases), 6 still infected, the worst results (Sperling 2001)
- 5/18 resections, worse functional results (Codd 1996)

Articular resection

- 7 resection out of 20 infected TSR
- All patients satisfied, poor results even with Neer's limited goal criteria
- Almost no motion, no or little pain
- No persistent infection

Braman JSE 2006

Articular resection

- Remove all infected tissues (cuff +++)
- Remove the implant(s) AND the cement
- High risk of humeral fracture
 - Cement removal techniques (Oscar)
- Drainage and Antibiotherapy

one-stage replacement

- * 8/18 pts (Codd 1996),
- * Same functional results

- 16 pts (Ince, 2004),
- Constant's score 33,6 pt
- 3 re-operations, none for persisting infection

 In this series, the germs were known in all cases

Two-stages replacement

- Remove all infected tissues +++
- Cultures +++
- Use of a spacer (?)
 - Oversized
 - Fix tuberosities to spacer in case of Fx
 - Rehabilitation with the spacer

Two-stages replacement

- Second operation between 4w-6m
 - TSR or Humeral prosthesis with capsular coverage of the glenoid (Burkhead, Seitz)
- Normalization of biologic factors
- Intra-operative tissues sampling

Two-stages replacement

- Constant 48 pts, all 10 pts cured (Jerosch 2003)
- 3/3 cured, best results (Sperling 2001)
- 10 cases, 40% still infected (Boileau 2004)

Other techniques

• Salvage procedures

Antibiotics?

- Adapted to the germs +++
- High doses
 - Gram +: Rifampicin + Fluoroquinolon
 - Gram -: Fluoroquinolon + C3G

Best treatment = prevention

- Pre-operative
 - Stop tobacco, Control diabetes
 - Mouth and bladder infection control
 - Cutaneous preparation, ATBprophylaxy, laminar flood,...

Best treatment = prevention

- Per-operative
 - ATBprophylaxy, laminar flood,...
 - Cement with ATB
 - Duration of surgery (< 2hrs NNIS)
 - No drainage (Gartsmann)
 - No urinary catheter
 - Early removal of dressing

Preventive antibiotherapy?

- Dental care ? NO
- Colonoscopy? NO

Except if confirmed infection

- Cutaneous infections?
 - Probably useful