PATHOLOGIE CHIRURGICALE DES NERFS PERIPHERIQUES

CERTIFICAT INTER-UNIVERSITAIRE EUROPEEN DE PATHOLOGIE CHIRURGICALE DE LA MAIN ET DES NERFS PERIPHERIQUES

ULg 2008

LUNDBORG MAC KINNON SCHUIND

• LES LESIONS NERVEUSES LES ENTRAPMENTS LES « SECTIONS »

- L'EXAMEN CLINIQUE
- LE TOS

- LES ENTRAPMENTS LES PLUS FREQUENTS
- LE PLEXUS BRACHIAL
- LES AUTRES LESIONS
- LES TUMEURS
- LA REEDUCATION

normal peripheral nerve : axon

Anterior horn

Extended processes of cell bodies located in spinal cord (motor neurons), dorsal root ganglia (sensory neurons), or sympathetic ganglia (sympathetic neurons)

Cell body (or perikaryon):

- nucleus (DNA),
- nucleoli (RNA),
- mitochondria,
- ribosomes ...

as in most cells

– Nissl substance :

combination of endoplasmic retinaculum and ribosomes

= site of protein synthesis (slow axonal transport)

Dendrites & AXON

Considerable axon length > 90% cell cytoplasm in axon (axoplasm)

AXONS : - myelinated (**) & -nonmyelinated (*)

ratio 1/4

!!! Axons quantities in a nerve

MYELINATED FIBERS :

membrane of Schwann cell is wrapped spirally around the axon

multilaminated sheath

(bl = basal lamina of Schwann cell)

longitudinal arrangement of Schwann cells separated by nodes of Ranvier allowing <u>quick "saltatory"conduction</u>

NONMYELINATED FIBERS

large number of axons embedded in the cytoplasm of one Schwann cell (*)

continuous ion exchange low impulse velocity

Type of nerve fibers (Erlanger and Gasser, 1937) :

• A, largest fibers : myelinated somatic afferents and efferents ; further subdivided in :

- A-alpha (15-20 μ efferent motor fibers),
- A-beta (8-15 µ touch),
- A-delta (2-5 μ sharp pain and temperature)

• **B**, **C** : small fibers, autonomic system and deep pain

Axonal transports :

Anterograde (cell body to axon):

fast (20 to 410 mm/day, membrane constituents and neurotransmitters)

n in 410 mm/d

Slow (0.1 to 30 mm/day, cytoskeletal and associated proteins)

provided by microtubules energy-requiring process (affected by trauma or ischemia)

Retrograde (periphery to cell body):

fast (up to 300 mm/day)

degradation materials ("recycling process"), and neurotrophic factors

Neurotrophic factors :

 proteins <u>providing information</u> on state of axon, terminals, target cells and environment

- three groups based on receptors :

- neurotrophins,
- neuropoietic cytokines (CNTF, Interleukin 6),
- fibroblast growth factors

– best known neurotrophic factor : Nerve Growth Factor (NGF) :

• present in low concentration in normal nerve

 increased in case of injury (role in sensory cell body survival and axonal sprouting)

•Axonal transport :

– can be macroscopically observed

-(swelling proximal and distal to nerve compression - ex carpal tunnel)

Endoneurium

Perineurium

Epineurium

Endoneurium:

loose collagenous matrix with fibroblasts and capillaries, disposed around axons and Schwann cells

Schwann cell (including basal lamina) + axons = endoneurial tube

Perineurium :

surrounds each fascicle up to 15 lamellae of flattened cells + basement membrane

diffusion barrier both sides barrier to entrance of large proteins maintain of endoneurial & electrolytic equilibrium

Pressure (slightly positive)

edema : "miniature compartment syndrome"

Note the existence of another barrier, the blood-nerve barrier :

- similar to blood-brain barrier
- tight junction between capillary endothelial cells of
 endoneurial capillaries (but permeability to glucose ...)

consequences in diabetic neuropathy

Epineurium :

connective tissue protecting fascicles

normally 50%

thicker (75%) at joint angulations

external epineurium : thick, allows nerve gliding (brachial plexus 50mm, ulnar nerve at elbow 9.8mm)

internal epineurium

longitudinal vessels (obliterated with nerve elongation (complete with 15%)

Deleterious effects of nerve elongation :alteration of conduction with >6% stretch

Epineurium determines types of fascicular patterns

Monofascicular

Oligofascicular

Polyfascicular

Sunderland (1978): longitudinal arrangement of fascicles with constantly changing with plexus formation

no restoration of alignment possible with excision, even limited

true for proximal nerve portion

-distally : long fascicular segments (JABELEY)

musculocutaneous nerve

median nerve :

origin

proximal forearm

distal forearm

Differences between the somatic & the autonomic nervous systems

T8 T6 T4 T2

IMPORTANCE FOR THE PAIN REFERRALS

et en cas de lésion ?

