Amputation Technique for a phalanx or a finger

Thierry Dubert
General Principles

- Decrease functional sequelae
 - Fine pinch
 - Global force

- Decrease esthetic sequelae

- Facilitate prosthesis use

Cerebral adaptation is noted after 10 days

(Weiss 2000) (Somatosensory-Evoked magnetic Fields)
Contents

• Main techniques

• Considerations according to level

• Considerations according to finger

• Operative strategy
Skin Drawing

- Short dorsal flap
- Longer palmar flap
Operative considerations

- Ligation of 2 arteries

- Nerve division
 - Dissection for 1,5 cm
 - Proximal section in healthy zone
 - Coverage by healthy tissues

- Division of flexor tendon
 - Never suture extensors
 quadriplegic effect Neu 1985
Skin Closure

- Without tension
- Single layer
- Good distal padding

Two difficulties:

Distal enlargement of the stump
Skin closure

Dog ear plasty

Buck-Gramcko
Skin closure

Dorsal skin plasty

Voche, Merle
P3 Level

- Do we keep the base of P3?
 - Risk of nail remnants
 - Excise a stump if less than 5mm
 (joint pain)

Gross & Watson
Do we keep base of P3?

Length
Force
Stump formation - MCQ 1

Which of the following is your favorite method to avoid nail remnants

• Complete removal of the nail bed
• Abrasion of the dorsal cortex of the distal phalanx
• Complete excision of the germinal matrix up to the distal extensor tendon insertion
• Full thickness skin graft on the nail bed
• Covering of the dorsal distal phalanx with a
Level P2 (long fingers)

• Distal to the distal insertion of FDS
 - Conserve maximum length

• Proximal to the distal insertion of FDS
 - NO active PIP flexion
P2 level (long fingers)
Stump formation - MCQ 2

In your own practice, when you perform a trans PIP or DIP disarticulation, what do you do with the cartilage?

A. I always excise the cartilage
B. I always leave the cartilage
C. I only excise the cartilage if it is injured
D. I only excise the cartilage if it is severely contaminated
E. I don't know
PIP level

• Trimming of lateral bone

• Excision of distal cartilage?
 - Pros:
 • Prone to infection
 • Skin vulnerability
 - Cons:
 • Less hematoma
 • Less infection
 • No distal bony spur/spicule
P1 Level (long fingers)

- Preserve maximum length
- MP Flexion partially preserved

Reinforced by a lasso around P2

(Saffar)
P1 Level (long fingers)
Complications

- Painful neuromas
- Phantom finger
- Lumbrical plus effect
- Quadrige Effect
Prevention of painful neuromas

- Bury nerve stump
 - dorsal to back of P1
 - distal
 - intra-osseous
 - Oblique tunnel
 - medullary canal

- Distal Auto-sutures
Stump formation - MCQ 3

Following finger amputation, the “lumbrical +”syndrome

A. Is frequent in trans distal phalanx amputation
B. Is secondary to lumbrical contracture
C. Is secondary to FDP kickback (“withdrawal”)
D. Is responsible for PIP flexion when MP is extended
lumbrical plus Effect

- PIP Extension in MP flexion
 - NO systematic prevention
 - division of secondary lumbrical if necessary
Adhesions of FDP Stump

- Limitation of neighboring finger flexion
- Cramp and pain at wrist and forearm
- Loss of global force, especially in MP flexion

Treatment by tenolysis of FDP stump
Considerations according to Ray

- Central Rays:
 incontinent hand
Considerations according to Ray

- Lateral Rays: loss of force
Considerations according to Ray

Lateral Rays: loss of force

Keep the maximum length
Thumb Amputation: reconstruction often indispensable

- Lengthening
- Toe Transfer
- Pollicisation
Strategy of digital amputation for tumors:

- A single doigt

Which level?

- Palliative (metastasis),
 or
- Safety Margin 3 - 5 cm?
Particular Strategies

- Upper Limb Melanomas (1000 new cases per year in France)

 trans PIP Amputation is enough
 Park 1992, Heaton

But the intervention must be carried out in a multi-disciplinary setting
Steps associated with amputation

• Local Infusion

 Baas 1989, Muchmore 1990

• Lymph node dissection

Risk of nodal invasion

• Breslow < 0.76 mm : almost nil
• 0.76 < Breslow < 1.5 mm : 5%
• 1.5 < Breslow < 2.5 mm : 24%
• Breslow > 4 mm : 36%

Joseph 1998
Sentinel Lymph Node detection in stages N0 M0

- Must be done peroperatively
 - 4 - 8 points of injection around the tumor

- Detection scintigraphy and/or patent blue
 (20 - 30 mn portable radio probe)

 Alex 1993
 Albertini 1996
 Gennari 2000

- histological study of identified node
• Visualisation of 4 axillary sentinel nodes D and G ().
• 2nd order axillary Lymph node D ()

R. Genin
After amputation

- Rehabilitation
- Desensibilisation
- Return to daily activities

Fisher GT, Boswick 1983
Thank you

www.sos-main.org