

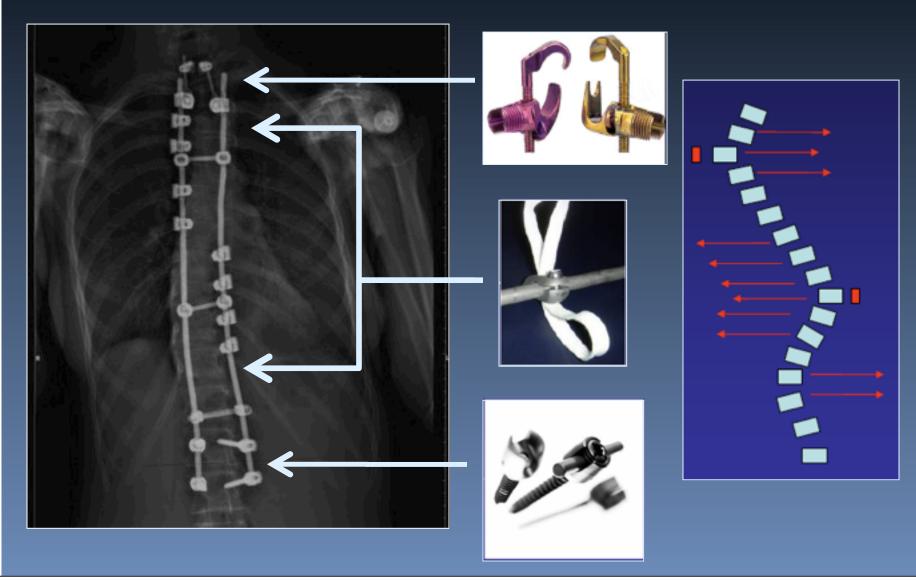
Hôpital Robert Debré <u>W. Delblond, B. Ilharreborde, GF. Penneçot, K. Mazda</u>

Introduction

- Évaluation de la réductibilité indispensable pour la STRATÉGIE chirurgicale
- Choix des niveaux d'arthrodèse
- Nombreux examens disponibles: Bending+++, Traction avec ou sans AG, Push-prone, Flexion fulcrum, Suspension.

Objectifs

Comparaison Traction et Bending:


- Évaluation de la réductibilité des courbures
- Détermination des niveaux d'instrumentation
- Prédiction de la correction obtenue par un montage hybride

LES 2 EXAMENS SONT-ILS NECESSAIRES?

- Étude radiologique prospective (2005-07)
- 92 patients consécutifs
- AIS Thoracique
 - Lenke 1 & 2
- Montage HYBRIDEClamp universel

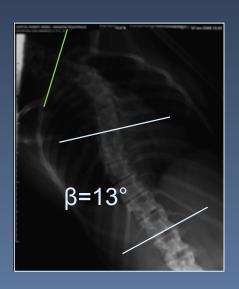
Niveau proximal: horizontalisation des épaules

	T1 = épaules, améliorées par correction principale	T1≠ épaules	T1 = épaules, aggravées par correction de la principale
α-(β/2) < 15°	Pas d'instrumentation	Instrumentation partielle	Instrumentation totale
α-(β/2) >15°	Instrumentation partielle	Instrumentation totale	Instrumentation totale

Niveau distal: disque mobile, neutre et stable

Ilharreborde B, et al. How to determine the upper level of instrumentation in Lenke types 1 and 2 adolescent idiopathic scoliosis. J Pediatr Orthop 2008.

- Analyse radiologique
 - Spine Balance®
- Analyse de 2 groupes
 - < ou > 55°
- Comparaison
 - Réductibilités des courbures
 - Niveau Proximal
 - Niveau Distal



 Réductibilité: Bendings > Traction, sauf pour les courbures thoracique principale > 55°

Radiographie	pré-opératoire d	donnant la plus	grande réductibilité
	P P		6

	Courbure thoracique principale < 55°	Courbure thoracique principale > 55°
Courbure thoracique proximale	Inclinaison Latérale	Inclinaison latérale
Courbure thoracique principale	Inclinaison Latérale	Traction
Courbure lombaire	Inclinaison Latérale	Inclinaison Latérale
Angle ilio-lombaire	Inclinaison Latérale	Inclinaison Latérale

Niveau proximal: Traction = Bendings

Niveau distal: Bendings > Traction

Faible corrélation avec le post-opératoire

Discussion

- Réductibilité:
 - Bending pour courbures < 55°</p>
 - Traction pour courbures > 55°

- Niveau proximal: α-(β/2) peut être déterminé sur les 2 examens
 - Traction = 1 seul cliché

Discussion

 Niveau distal: Bending indispensable, préservation de segments lombaires

- Faible corrélation avec correction obtenue par montage hybride
 - Sauf angle de la dernière vertèbre instrumentée
 - Force réduction implants de dernière génération
 - Équilibre ≠ réductibilité maximale

Limites

- Monocentrique
- Mesure objective de la traction appliquée ?
- Bending dépend de la compliance du patient

Conclusion

- Traction, alternative pour le niveau proximal
- Bending reste essentiel pour le niveau distal
- Pas de prédictibilité de la correction avec un montage hybride

Courbure < 55° = Bendings Courbure > 55° = Bendings + Traction

