Wrist instability

Christian Dumontier Institut de la Main & hôpital saint-Antoine, Paris (with courtesy of A. Pagliei & S. Kozin)

The radio-carpal joint

The first row

- Is devoid of any tendinous insertion
- Intercalary segment
- System with "variable" geometry

The midcarpal joint

3 different joints

 The STT joint allows for flexion/ extension of the scaphoid

 The triquetro-hamate joint is helicoidal and allows for translation and rotation of the triquetrum on the hamate

• The capito-hamate is the central pivot of the wrist

The first row forms an adaptable acetabulum

Interosseous ligaments serve as to stabilise the form of the first row

Wrist "instability"

Ligamentous injuries

 Secondary to bony lesions (i.e. kienböck's, distal radius malunion,...)

Instability I (Sprain)	Instability II (Subluxation)	Instability III (Dislocation)	Instability IV (Fx-Dislocation)	
Radiocarpal Recurrent symptoms with variable clinical findings; assess by dynamic imaging only	CIND-VISI CIND-DISI Ulnar translation*	Dorsal* Palmar Ulnar	Dorsal Barton's* Palmar Barton's* Radial or ulnar styloid or fossa & carpal translation	
Perilunate Recurrent symptoms with variable clinical findings; static imaging normal, cinefluoroscopic imaging can be diagnostic	CID-DISI (SLD)* CID-VISI (LT)	Perilunate	Transosseous PLD tS-pL* > others	
Midcarpal Dynamic instability with variable clinical findings; static imaging normal, fluoroscopic imaging → midcarpal changes ± "catch-up clunk"	CIND-VISI* > DISI Triquetrohamate* Scaphotrapezium trapezoid DISI > VISI capitolunate	†	†	
Axial †	†	†	Axial-ulnar or axial-radial (or both) fx dislocations	
Carpometacarpal Recurrent symptoms of painful grip; variable clinical findings; CMC stress test (Linscheid) positive; static fingers; radiographs normal; + bone scan	CMC II & III; tomogram may confirm	CMC II & III Lateral or obliques +; tomogram confirms	CMC I, IV, V most common; special views (Roberts') confirm	
Distal Radioulnar Recurrent symptoms with forearm rotation; clinical findings with rotation stress;	Distal, dorsal, palmar, ulnar; axial computed tomogram confirms	Distal, dorsal, palmar, ulnar; lateral radiograph confirms	Dislocations associated with fx of distal ulna, ulnar styloid, &	

Classification according to localisation o the lesions

sigmoid notch

normal or questionable

imaging findings

	Type, Site, & Name	Radiographic Pattern
	I. CID	.boxuu
	1.1 Proximal carpal row CID	David Barrow
	a. Unstable scaphoid fracture	DISI
	b. Scapholunate dissociation	DISI
	c. Lunotriquetral dissociation	VISI
	1.2 Distal carpal row CID	le hue alle leibra comparenter
	a. AR disruption	RT
	Periluhate autorite state a baudal	PT
	b. AU disruption	UT
	Lignosis of carpin and Mayo Ciddsinch non antheir bailith strategies	РТ
	c. Combined AR and AU disruption	Contraction of the state
	1.3 Combined proximal and distal CID	ukapat tertus with special roles
	II. CIND	gate conceptual terms such:
	2.1 Radiocarpal CIND	mmar" concept. "closed rin
Classification	a. Palmar ligament rupture	DISI, UT of entire proximal carpal row
Classification	is Stress testing and some stranginged yourney of the taky for a warm and couts	UT with increased SL space;
	clinical and radio. A manusent fills triest of the viaff and many of the follows	PT (actually is a CIC)
according to	b. Dorsal ligament rupture	VISI, DT
	c. After "radius malunion," Madelung's deformity,	
the type of	scaphoid malunion, lunate malunion (see "Adaptive carpus" below)	no comitest condensation an
	2.2 Midcarpal CIND	
instability	a. Ulnar MCI from palmar ligament damage	VISI
mstability	b. Radial MCI from palmar ligament damage	VISI
	c. Combined UMCI & RMCI, palmar ligament damage	VISI
	d. MCI from dorsal ligament damage	DISI
	2.3 Combined radiocarpal-midcarpal CIND	SIE POSTJ PAUMANC INSTABI
	a. CLIP	VISI, DISI, alternating
	b. Disruption of radial & central ligaments	UT with or without VISI or DISI
	III. CIC	
	a. Perilunate with radiocarpal instability	DISI & UT
	b. Perilunate with axial instability	AxUI & UT
	c. Radiocarpal with axial instability	AxRI & UT
	d. Scapholunate dissociation with UT	DISI & UT
	IV. "Adaptive carpus"	Instrate ov/orthe samogade galle
	a. Malposition of carpus with distal radius malunion	DISI or DT
	b. Malposition of carpus with scaphoid nonunion	DISI
	c. Malposition of carpus with lunate malunion	DISL or VISI
	d. Malposition of carpus with Madelung's deformity	UT DISL PT
	a map on ton or carp as man madelangs actornity	01, 0101, 11

CID versus CIND

Complex types are the various associations

Radio-carpal instability

CIND

- Very (very) rare
- Radio-carpal dislocation

Surgical treatment is recommended

Dumontier et al., JBJS 2001

Proximal CID-Scapholunate

Continuum of lesions

Scapho-lunate

Stage	Occult	Dynamic	Scapholunate dissociation	DISI	SLAC
Injured lgts	Partial SLIL	Torn SLIL, partial palmar extrinsics	Complete SLIL, volar or dorsal extrinsics	SLIL+extrinsics +2ary lesions	idem
Xrays	normal	usually normal	SL gap > 3mm +/- SL∆ > 70°	SL gap > 3mm +/- SL Δ > 70°, RL Δ > 15°, CL Δ < 15°	I styloid DJD II RS DJD III CL DJD IV Pan-carpal
Stress Xrays	normal	abnormal	grossly abnormal	unnecessary	unnecessary

Direct repair

Only the dorsal part of the SL ligament can heal

Treatment

Dorsal capsulodesis

- Usually associated with ligamentous repair
- Blatt (Hand Clin 1997) Taleisnik (JHS 1992)

Capsulodesis modifications

Kleinman (ASSH 2000)

Viegas (JHS 1999)

Szabo (JHS 1999)

Saffar AOB 1999

37 Patients Motion - 82% Pain Relief - 83% Gap = 4.2 mm 17 Patients (≺ 3 months after injury, f/u 30 months)
Motion - 60%
Recurrent SL gap
15/17 - Fair/Poor

Bone-ligament-bone

Weiss et al J Hand Surg 1998

Extensor Retinaculum

- 1/3 ultimate strength

- "toothpick vs 2X4"

- 1/3 cross sectional area as

- same stress/strain

properties as SLI

SLI

Ist cuneiform-navicular ligament
excellent strength (479 N)
articular surface interface
remote donor site

Davis, Culp, Hume, Osterman J Hand Surg 1998 Hofstede, Ritt, Bos J Hand Surg 1999

Capitohamate Ligament

"deep" capitohamate

manually reduce SL join Stabilize with 2 0.045 K wires in palmar 1/2 o scaphoid and lunate

Partial arthrodesis

arthrodesi	Туре	Ext / flex	RD/UD	
S		(%)	(%)	
STT	Clinical	62-80	52-64	
	Simulated	73-88	68-83	
SC	Clinical	47	79-81	
	Simulated	81-82	52-64	
SCL	Clinical	47	46	
	Simulated	59-66	64-91	

Scapholunate Az

- Motion in flexion and extension goes through the SL joint
- There is no report of a congenital scapholunate fusion
- Fusion difficult to achieve
 - Considerable loads
 - Small surface area
 - About 50% nonunion

Hom J Hand Surg 1991 McAullife et al. J Hand Surg 1993 Hastings & Silver. J Hand Surg 1984

"incomplete" SL fusion

- The RASL procedure allows for correction of radiological parameters and improvement of symptoms
- However, radiolucency around the Herbert screw raises concern about the future

STT arthrodesis

Alters carpal kinematics
 All loads transfer to scaphoid fossa

Sutro Sugery 1946 Peterson & Lipscomb Arch Surg 1967 Watson & Hempton. J Hand Surg 1980

798 STT arthrodesis

- 543 "rotatory" subluxation
 - Union rate 96%

86% "better or much better"

- Flexion/extension & RD/UD 75%
- Grip strength 80%

Watson et al. One Thousand Intercarpal Arthrodeses. J Hand Surg British 1999

STT fusion

- Complications
 - Nonunion 4-24%
 - Radial styloid scaphoid arthritis
 - Progressive carpal arthrosis (may be related to scaphoid reduction)

Fortin & Lewis. J Hand Surg 1990 Kleinman & Carroll. J Hand Surg 1990 McAullife et al. J Hand Surg 1993

SC fusion

- I7 patients (4 rotatory subluxation, 9 Kienbock's, 3 scaphoid nonunion, I lunate nonunion)
- Primary union 15/17 ROM averaged 42° extension, 32° flexion
- easier to fuse than STT, but gives more stiffness

Pisano, Peimer et al. J Hand Surg 1991

Douglas, Peimer et al. JBJS 1987 Garcia-Elias et al. J Hand Surg 1989

SLAC wrist

• I. Radial styloid- scaphoid distal pole

- II. Radius- proximal pole (ovoid anatomy, load change)
- III. Capitolunate joint
- IV. Radiolunate usually spared (spherical)

SLAC wrist

• SLAC treatment options

- Wrist denervation
- Radioscapholunate fusion
- Proximal row carpectomy (PRC)
- Scaphoid excision & 4-corner fusion

4-corner fusion

 Outcome- multiple studies
 Expected 50-70° (60-70%) flexionextension and 40-50° (50-70%) radial-ulnar deviation, grip strength 70-80%

• Reliably decreases pain

Must correct the DISI pattern to maximize wrist extension

Cohen MS, Kozin SH. Proximal Row Carpectomy versus Scaphoid Excision and Four-Corner Arthrodesis. J Hand Surg 2001;26A:94-104.

Proximal row carpectomy

In stages I & II
Intact capitolunate joint ?
Volar or dorsal incision

Proximal row carpectomy

- Expected 50-70° (60-70%) flexionextension and 20-40° (40-50%) radial-ulnar deviation, grip strength 70-80%
- Little to no radial deviation
- Mild x-ray changes over time, clinical results preserved

4-corner vs PRC

Temple University 19 Patients Mean - 48 years Follow-up - 17 months

- Rush Medical Center
- 19 Patients
- Mean 47 years
- Follow-up 28 months

PROXIMAL ROW CARPECTOMY

Wrist denervation

Wrist arthrodesis

Hastings H et al. Arthrodesis of the wrist for traumatic disorders J Bone Joint Surg 1996;78A:897-902.

Partial	YES	YES	YES	YES	YES
Dynamic	no	YES	YES	YES	YES
2ary stabilizers	no	no	YES	YES	YES
Irreducible	no	no	no	YES	YES
Cartilaginous lesions	no	no	no	no	YES
	K-Wires Nothing	Bone-lgt -bone, lgt suture	Ligamento plasty	4-corner, PRC	Fusion

Lunotriquetral instability

- Less symptomatic
- Do not evolve to a VISI type deformity, unless the dorsal radiotriquetral ligament is also torn

Lunotriquetral instability treatment

- Ligamentoplasty
- Lunotriquetral fusion

Midcarpal instability

• The less understood carpal instability

- 2 types (at least)
 - Radial type (STT instability)
 - Ulnar type

Conclusion (I)

- Wrist instability is a wild and mostly unknown world
- The scapholunate instability is the most frequent and most debilitating carpal instability.
- Diagnosis is difficult in early stages and requires sophisticated imaging techniques and/or arthroscopic evaluation

Conclusion (2)

 Many techniques have been developed but their indications should be discussed according to the extent of the lesions and patient's expectations